Introduction
The terms bioinformatics and computational biology are often used interchangeably. However bioinformatics more properly refers to the creation and advancement of algorithms, computational and statistical techniques, and theory to solve formal and practical problems arising from the management and analysis of biological data. Computational biology, on the other hand, refers to hypothesis-driven investigation of a specific biological problem using computers, carried out with experimental or simulated data, with the primary goal of discovery and the advancement of biological knowledge. Put more simply, bioinformatics is concerned with the information while computational biology is concerned with the hypotheses. A similar distinction is made by National Institutes of Health in their working definitions of Bioinformatics and Computational Biology, where it is further emphasized that there is a tight coupling of developments and knowledge between the more hypothesis-driven research in computational biology and technique-driven research in bioinformatics. Bioinformatics is also often specified as an applied subfield of the more general discipline of Biomedical informatics.
A common thread in projects in bioinformatics and computational biology is the use of mathematical tools to extract useful information from data produced by high-throughput biological techniques such as genome sequencing. A representative problem in bioinformatics is the assembly of high-quality genome sequences from fragmentary "shotgun" DNA sequencing. Other common problems include the study of gene regulation to perform expression profiling using data from microarrays or mass spectrometry.
A common thread in projects in bioinformatics and computational biology is the use of mathematical tools to extract useful information from data produced by high-throughput biological techniques such as genome sequencing. A representative problem in bioinformatics is the assembly of high-quality genome sequences from fragmentary "shotgun" DNA sequencing. Other common problems include the study of gene regulation to perform expression profiling using data from microarrays or mass spectrometry.
No comments:
Post a Comment