Sunday, May 24, 2009

Definition of Tomography

Definition of Tomography

Tomography: The process for generating a tomogram, a two-dimensional image of a slice or section through a three-dimensional object. Tomography achieves this remarkable result by simply moving an x-ray source in one direction as the x-ray film is moved in the opposite direction during the exposure to sharpen structures in the focal plane, while structures in other planes appear blurred. The tomogram is the picture; the tomograph is the apparatus; and tomography is the process.

See also: Computed tomography (CT); Computed tomography colography; Computerized axial tomography scan (CAT scan); Electron beam computerized tomography (EBCT); Positron emission tomography (PET scan).

What is Bioinformatics and Computational Biology?

Bioinformatics and computational biology involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. Research in computational biology often overlaps with systems biology. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and protein-protein interactions, and the modeling of evolution. 

Introduction

The terms bioinformatics and computational biology are often used interchangeably. However bioinformatics more properly refers to the creation and advancement of algorithms, computational and statistical techniques, and theory to solve formal and practical problems arising from the management and analysis of biological data. Computational biology, on the other hand, refers to hypothesis-driven investigation of a specific biological problem using computers, carried out with experimental or simulated data, with the primary goal of discovery and the advancement of biological knowledge. Put more simply, bioinformatics is concerned with the information while computational biology is concerned with the hypotheses. A similar distinction is made by National Institutes of Health in their working definitions of Bioinformatics and Computational Biology, where it is further emphasized that there is a tight coupling of developments and knowledge between the more hypothesis-driven research in computational biology and technique-driven research in bioinformatics. Bioinformatics is also often specified as an applied subfield of the more general discipline of Biomedical informatics.
A common thread in projects in bioinformatics and computational biology is the use of mathematical tools to extract useful information from data produced by high-throughput biological techniques such as genome sequencing. A representative problem in bioinformatics is the assembly of high-quality genome sequences from fragmentary "shotgun" DNA sequencing. Other common problems include the study of gene regulation to perform expression profiling using data from microarrays or mass spectrometry.

DNA sequencing

The term DNA sequencing encompasses biochemical methods for determining the order of the nucleotide bases, adenine, guanine, cytosine, and thymine, in a DNA oligonucleotide. The sequence of DNA constitutes the heritable genetic information in nuclei, plasmids, mitochondria, and chloroplasts that forms the basis for the developmental programs of all living organisms. Determining the DNA sequence is therefore useful in basic research studying fundamental biological processes, as well as in applied fields such as diagnostic or forensic research. The advent of DNA sequencing has significantly accelerated biological research and discovery. The rapid speed of sequencing attainable with modern DNA sequencing technology has been instrumental in the large-scale sequencing of the human genome, in the Human Genome Project. Related projects, often by scientific collaboration across continents, have generated the complete DNA sequences of many animal, plant, and microbial genomes.

Regulation of gene expression

 Regulation of gene expression (or gene regulation) refers to the cellular control of the amount and timing of changes to the appearance of the functional product of a gene. Although a functional gene product may be an RNA or a protein, the majority of the known mechanisms regulate the expression of protein coding genes. Any step of the gene's expression may be modulated, from DNA-RNA transcription to the post-translational modification of a protein. Gene regulation gives the cell control over its structure and function, and is the basis for cellular differentiation, morphogenesis and the versatility and adaptability of any organism 

Sequence analysis

Since the Phage Φ-X174 was sequenced in 1977, the DNA sequences of hundreds of organisms have been decoded and stored in databases. The information is analyzed to determine genes that encode polypeptides, as well as regulatory sequences. A comparison of genes within a species or between different species can show similarities between protein functions, or relations between species (the use of molecular systematics to construct phylogenetic trees). With the growing amount of data, it long ago became impractical to analyze DNA sequences manually. Today, computer programs are used to search the genome of thousands of organisms, containing billions of nucleotides. These programs would compensate for mutations (exchanged, deleted or inserted bases) in the DNA sequence, in order to identify sequences that are related, but not identical. A variant of this sequence alignment is used in the sequencing process itself. The so-called shotgun sequencing technique (which was used, for example, by The Institute for Genomic Research to sequence the first bacterial genome, Haemophilus influenzae) does not give a sequential list of nucleotides, but instead the sequences of thousands of small DNA fragments (each about 600-800 nucleotides long). The ends of these fragments overlap and, when aligned in the right way, make up the complete genome. Shotgun sequencing yields sequence data quickly, but the task of assembling the fragments can be quite complicated for larger genomes. In the case of the Human Genome Project, it took several months of CPU time (on a circa-2000 vintage DEC Alpha computer) to assemble the fragments. Shotgun sequencing is the method of choice for virtually all genomes sequenced today, and genome assembly algorithms are a critical area of bioinformatics research.
Another aspect of bioinformatics in sequence analysis is the automatic search for genes and regulatory sequences within a genome. Not all of the nucleotides within a genome are genes. Within the genome of higher organisms, large parts of the DNA do not serve any obvious purpose. This so-called junk DNA may, however, contain unrecognized functional elements. Bioinformatics helps to bridge the gap between genome and proteome projects--for example, in the use of DNA sequences for protein identification.

Sequence profiling tool

A sequence profiling tool in bioinformatics is a type of software that presents information related to a genetic sequence, gene name, or keyword input. Such tools generally take a query such as a DNA, RNA, or protein sequence or ‘keyword’ and search one or more databases for information related to that sequence. Summaries and aggregate results are provided in standardized format describing the information that would otherwise have required visits to many smaller sites or direct literature searches to compile. Many sequence profiling tools are software portals or gateways that simplify the process of finding information about a query in the large and growing number of bioinformatics databases. The access to these kinds of tools is either web based or locally downloadable executables.